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Received 2 October 1997

Abstract. In this paper we continue with the study of linear statistics of random Hermitian
matrix ensembles. We generalize the result of a previous paper on the probability density
function of linear statistics to the finiteN ensembles where the interval of support of the
eigenvalue spectrum is a single interval.

Combining the Hankel determinant formula for orthogonal polynomials which are associated
with Hermitian matrix ensembles and the linear statistics theorem for finiteN , we obtain the
strong or oscillatory asymptotics for the polynomials orthogonal with respect to weight functions
supported on the real axis.

1. Introduction

In the application of the theory of random matrices, for example in the theory of quantum
transport in disordered systems [3], one is often encountered with the random variable

Q := tr f (M) (1.1)

wheref (M) is a real-valued function of theN ×N matrixM.
The space of matrices has the probability measure [5]

prob(M)dM := exp[− tr v(M)] dM = vol(β,N)
∏

16j<k6N
|xj − xk|β

∏
16l6N

e−v(xl ) dxl. (1.2)

Here{xj : 16 j 6 N} are the eigenvalues,β = 1, 2, 4 are for matrices with orthogonal,
unitary and symplectic symmetries respectively and vol(β,N) are the corresponding
volumes of the symmetry groups that diagonalize the respective matrices. For the purpose
of this paper we shall assume thatv(x) is convex, forx ∈ R, and thereforev′′(x) is positive
on a set of positive measure.

2. Linear statistics

We suppose the probability density function ofQ, denoted byP(Q), is known and compute
its Fourier transform,

P̂(k) :=
∫ +∞
−∞

dQe−ikQP(Q) (2.1)

where

P(Q) := 〈δ(Q− tr f (M))〉M. (2.2)
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The symbol〈·〉M denotes an average over the matrices

〈g(M)〉M :=
∫

dM exp[−N tr v(M)]g(M)∫
dM exp[−N tr v(M)]

. (2.3)

Note that we have introduced the factorN in front of v(M) for the convenience of evaluating
the multiple integrals in a largeN or Coulomb fluid approximation [8]. In what follows we
shall only deal with the Hermitian case, i.e.β = 2.

Expressing dM in the eigenvalue form using (1.2), we have, writing ik asλ,

P̂(−iλ) = ZN(λ)

ZN(λ = 0)
:= exp[−(FN(λ)− FN(λ = 0))] (2.4)

where

ZN(λ) :=
( N∏
j=1

∫ ∞
−∞

dxj

)
exp

[
−8(x1, . . . , xN)− λ

N∑
n=1

f (xn)

]
. (2.5)

If we interpretxj , j = 1, . . . , N as the positions ofN charged particles (all carrying identical
charges), then

8(x1, . . . , xN) := −2
∑

16j<k6N
ln |xj − xk| +N

N∑
j=1

v(xj ) (2.6)

becomes the total energy ofN repelling classical charged particles confined by a common
external potentialNv(x). The linear statistics,f (x), becomes a perturbation to the original
system. In the limit of largeN the collection of particles can be approximated as a
continuous fluid with a densityσ(·) supported inJ (a subset ofR). If σ is normalized
to unity, thenσ can be obtained as the solution of the following constrained minimization
problem:

minσF [σ ] subject to
∫
J

dx σ(x) = 1 (2.7)

where

F(λ) :=
∫
J

dx σ(x)[N2v(x)+ λNf (x)] −N2
∫
J

dx
∫
J

dy σ(x) ln |x − y|σ(y). (2.8)

HereF(λ) is interpreted as the free energy of the system under an external perturbation with
‘strength’ λ andF(λ = 0) the free energy of the original system. Therefore, the Fourier
transform of the linear statistics can be expressed as the change in the free energy due to
perturbation;

P̂(λ) = exp[−(F (λ)− F(λ = 0))]. (2.9)

Upon minimizationσ(x) is found to satisfy the integral equation

N2v(x)+ λNf (x)− 2N2
∫
J

dy ln |x − y|σ(y) = NA x ∈ J (2.10)

whereA is a constant forx ∈ J andNA is the Lagrange multiplier that fixes the constraint
also known as the chemical potential. Differentiating (2.10) with respect tox gives the
singular integral equation

N2v′(x)+ λNf ′(x)− 2N2P

∫
J

dy

x − y σ(y) = 0 x ∈ J (2.11)

satisfied byσ . To solve forσ we write

σ(x) = σ0(x)+ %(x)
N

(2.12)
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with ∫
J

dx σ0(x) = 1
∫
J

dx %(x) = 0. (2.13)

We supposeσ0 solves,

v′(x)− 2P
∫
J

dy

x − y σ0(y) = 0 (2.14)

and% solves

λf ′(x)− 2P
∫
J

dy

x − y %(y) = 0. (2.15)

We now discuss the solution forσ0. Under the assumption thatv(x) is convex and
consequentlyv′′(x) > 0 in a set of positive measure, it can be shown that [2]σ0(x)

is supported in a single interval(a, b). The solution subject to the boundary condition
σ0(a) = 0= σ0(b) reads, according to the theory of singular integral equations [9],

σ0(x) =
√
(b − x)(x − a)

2π2
P

∫ b

a

dy

y − x
v′(y)√

(b − y)(y − a) y ∈ (a, b) (2.16)

with a supplementary condition,∫ b

a

dx
v′(x)√

(b − x)(x − a) = 0. (2.17)

The normalization condition,
∫ b
a

dx σ(x) = ∫ b
a

dx σ0(x) = 1, becomes,

1

2π

∫ b

a

dx
xv′(x)√

(b − x)(x − a) = 1. (2.18)

The unique solution for% subject to
∫
J

dx %(x) = 0, is

%(x) = λ

2π2
√
(b − x)(x − a)P

∫ b

a

dy

√
(b − y)(y − a)

y − x f ′(y) (2.19)

recalling that the support ofσ0, J , is (a, b). Thus the change in free energy is

F(λ)− F(λ = 0) = λ

2

∫ b

a

f (x)%(x)+ λN
∫ b

a

dx f (x)σ0(x)

= λ2

4π2

∫ b

a

dx
f (x)√

(b − x)(x − a)P
∫ b

a

dy

√
(b − y)(y − a)

y − x f ′(y)

+λN
∫ b

a

dx f (x)σ0(x). (2.20)

Therefore,P(Q), the probability density of the linear statisticsf (x), is a Gaussian with
mean,

N

∫ b

a

dx f (x)σ0(x) (2.21)

and variance

1

2π2

∫ b

a

dx
f (x)√

(b − x)(x − a)P
∫ b

a

dy

√
(b − y)(y − a)

x − y f ′(y). (2.22)
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If P̂(k) is interpreted as the probability densityfunctional of the local density random field,
then the covariance or the two-point function of the local density (normalized so that the
total number of eigenvalues isN ) is

Cov(x, y) = 1

2π2
P

ab + xy − (x + y)(a + b)/2√
(b − x)(x − a)√(b − y)(y − a)(x − y)2 . (2.23)

Note that in this normalization of the density, the right-hand side of (2.18) should be replaced
by N . For convexv(x), we haveb → +∞, asN → ∞, and a → −∞, asN → ∞.
Therefore,

lim
N→∞

Cov(x, y) = − 1

2π2(x − y)2 (2.24)

reducing to a well known result [5].
In the next two sections, we give applications of the linear statistics formulae (2.21)

and (2.22). In section 3 we give the probability density function for the number statistics,
n[A,B], defined to be the number of eigenvalues in an interval [A,B] contained in [a, b].
This was first investigated in [3] where the eigenvalues are supported in [0,∞) and in the
limit N →∞. We shall see that the probability density of the number of eigenvalues in an
interval is a Gaussian with a universal variance behaving in a qualitatively similar way as
that studied in [3]. In section 4, an interesting application of (2.20) is made to compute the
strong asymptotics of the orthogonal polynomials based on the Hankel determinant formula.
This gives the strong asymptotics of the polynomials in terms of the confining potential
v(x). Using the asymptotic formula we compute the reproducing kernel and investigate its
bulk scaling form. By specializingv(x) we establish a conjecture of Nevai on the Freud
polynomials [6], wherev(x) = |x|α, x ∈ (−∞,∞), α > 1. This is found to be agreement
with the result of [7]. In section 5, we indicate how the asymptotics of the gap orthogonal
polynomials can be determined.

3. The number statisticsn[A,B]

In this case the appropriate linear statistics is

f (x) := χ[A,B](x) a < A 6 x 6 B < b (3.1)

where χ[A,B](x) is the characteristic function of the interval [A,B]. Note that the
characteristic function has the convenient form,χ[A,B](x) = 1

2[θ(x − A) − θ(A − x) −
(θ(x − B)− θ(B − x))]. Using (2.20) we find

F(λ)− F(λ = 0) = P
∫ B

A

λ2 dx/(4π2)√
(b − x)(x − a)

[√
(b − A)(A− a)

A− x −
√
(b − B)(B − a)

B − x
]

+λN
∫ B

A

dx σ0(x) (3.2)

where the first integral is found by using the fact thatχ ′[A,B](x) = δ(x − A) − δ(x − B).
The second integral is the average number of particles/eigenvalues in the interval [A,B].

Denoting the first integral asS[A,B], it can be seen in the bulk scaling limit, where
b � B and |a| � |A|, that

S[A,B] = −O

[
ln

(
B − A
ε

)]
B − A� ε (3.3)
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where ε is the short distance cut-off dictated by the principal-value integral. Explicitly
S[A,B], can be expressed in terms of elementary functions, however, the logarithmic
behaviour is not apparent.

To see this we specialize to evenv(x), and consequentlya = −b. We also choose a
symmetric interval for the characteristic function;A = −B. Thus, denotings = 2B,

S[s] = − λ2

2π2
ln

[
s

ε

(
1− s2

4b2

)]
∼ − λ2

2π2
ln
( s
ε

)
b � s � ε. (3.4)

Therefore the probability density of the number of eigenvalues in a symmetric interval
of lengths, confined by an even convex potential is a Gaussian centred at

N

∫ s/2

−s/2
dx σ0(x) (3.5)

with variance
1

π2
ln
( s
ε

)
. (3.6)

This generalizes the result obtained in [3].

4. Strong asymptotics

In the theory of Hermitian random matrices, a fundamental quantity, denoted asE[J ], is
the probability that the intervalJ of the spectrum has no eigenvalues. This quantity can
be expressed as the Fredholm determinant of a certain integral operator,K̂, over J [5];
E[J ] = det[1− K̂J ], whereK̂ has kernel

KN(x, y) =
√
w(x)w(y)

√
βN
p̂N(x)p̂N−1(y)− p̂N (y)p̂N−1(x)

x − y .

Herew(x) = e−v(x) is weight function of the orthonormal polynomialŝpn(x);∫ +∞
−∞

dx w(x)p̂m(x)p̂n(x) = δm,n
and satisfies the recurrence relations

xp̂n(x) =
√
βn+1p̂n+1(x)+ αnp̂n(x)+

√
βnp̂n−1(x)

with αn ∈ R andβn > 0. KN(x, y) is also known as the reproducing kernel.
It is therefore of interest to determine asymptotics for the polynomials in the bulk scaling

limit, which corresponds to fixingx in the oscillatory region of the polynomials and with
N large.

According to the Hankel determinant representation for monic polynomialspN(t)

orthogonal with respect to the weight functionw(t), has the multiple-integral representation
[10];

pN(t) = 〈det(t I −M)〉M =
(
∏N
j=1

∫ +∞
−∞ dxjw(xj ))

∏
16l<n6N |xl − xn|2

∏N
k=1(t − xk)

(
∏N
j=1

∫ +∞
−∞ dxj w(xj ))

∏
16l<n6N |xl − xn|2

.

(4.1)

From this we recognize that the computationpN(t) is a special case of the linear statistics
theorem, withf (x; t) := − ln(t − x), and λ = 1. It is well known that an orthogonal
polynomial of degreeN hasN real simple zeros which are bounded by the end points of
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the support ofσ0, the zero counting function, denoted asa andb. It can be shown that|a|
andb are increasing functions ofN if v(x) is convex and are determined by∫ b

a

dx
v′(x)√

(b − x)(x − a) = 0
∫ b

a

dx
xv′(x)√

(b − x)(x − a) = 2πN.

Note that here
∫ b
a

dx σ0(x) = N . The largest zero for largeN is slightly smaller thenb for
convexv(x), [2]. We therefore compute the change in the free energy fort > b, so that
ln(t − x) > 0, for x ∈ (a, b). It can be shown that the formula given below is valid fort
outside the interval in which the zeros ofpN(t) are contained. Fort > b and t < a, pN(t)
does not oscillate. Thus denoting the change in the free energy byS(t), gives,

pN(t) = exp[−S(t)] t /∈ [a, b] (4.2)

where

S(t) = S1(t)+ S2(t) (4.3)

with

S1(t) := 1

4π2

∫ b

a

dx
ln(t − x)√

(b − x)(x − a)P
∫ b

a

dy

√
(b − y)(y − a)
(y − x)(y − t) (4.4)

S2(t) := −
∫ b

a

dx ln(t − x)σ0(x) (4.5)

for t /∈ [a, b]. To determine the strong asymptotics, fort ∈ [a, b], wherepN(t) oscillates, we
definepN(t), t ∈ [a, b] to be the real part of the analytic continuation ofpN(t), t /∈ [a, b].
Thus

pN(t) := <[exp[−S(t + iε)]] t ∈ [a, b] ε→ 0. (4.6)

We find after some elementary computations,

S1(t) = 1

4
ln

16(t − a)(t − b)
(b − a)2

[√
t − a −√t − b√
t − a +√t − b

]2
 t /∈ [a, b] (4.7)

S2(t) = −N ln

(√
t − a +√t − b

2

)2

+
∫ b

a

dy

2π

v(y)√
(b − y)(y − a)

[√
(t − a)(t − b)
y − t + 1

]
t /∈ [a, b] (4.8)

where the normalization and supplementary conditions have been used to arrive atS2(t).
The behaviour ofS1(t) for <t ∈ [a, b], and =t = ε → 0, can be found by the

parametrization;

t − a = |t − a|eiθa t − b = |t − b|eiθb θa = ε θb = π − ε.
Thus

e−S1(t+iε) =
√
b − a

4

1

[(t − a)(b − t)]1/4
exp

[
i
(
φ(t)− π

4

)]
t ∈ [a, b] (4.9)

and the angleφ(t) can be parametrized in several ways:

cos[2φ(t)] = 2t − (b + a)
b − a tan[φ(t)] = (b − t)1/2

(t − a)1/2 . (4.10)
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To determineS2(t + iε), t ∈ [a, b], we use the same procedure as in determiningS1(t + iε)
and the Sokhotski–Plemelj formula [9] and find

e−S2(t+iε) =
(√

b − a
2

)2N

exp

[
v(t)

2
−
∫ b

a

dx

2π

v(x)√
(b − x)(x − a)

]
× exp

[
2iNφ(t)− iP

∫ b

a

dx

2π

v(x)

x − t
√
(b − t)(t − a)√
(b − x)(x − a)

]
t ∈ [a, b].

Using the above information, we find that the orthogonal polynomials have the following
strong asymptotics expansion,

√
w(t)pN(t) ∼

(√
b − a
2

)2N+1
1

[(b − t)(t − a)]1/4
exp

[
−
∫ b

a

dx

2π

v(x)√
(b − x)(x − a)

]
× cos

[
(2N + 1)φ(t)− π

4
− P

∫ b

a

dx

2π

v(x)

x − t
√
(b − t)(t − a)√
(b − x)(x − a)

]
t ∈ [a, b].

This gives the strong asymptotics expansion directly in terms of the confining potential,
v(x).

There is an alternative evaluation ofS2(t), which has the advantage of exposing the
parity rule satisfied bypN(t) for even v(x), pN(−t) = (−1)NpN(t), t ∈ R. First we
computedS2

dt , t /∈ [a, b]. Thus

S ′2(t) = −
∫ b

a

dx
σ0(x)

t − x and S ′2(t)
∣∣∣∣
t→t+iε

= −P
∫ b

a

dx
σ0(x)

t − x + iπσ0(t)

= −v
′(t)
2
+ iπσ0(t).

Integrating fromb to t , gives

S2(t + iε) = S2(b)− [v(t)− v(b)]
2

+ iπ
∫ t

b

dsσ0(s) t ∈ [a, b].

Puttingx = b in the integral equation satisfied byσ0,

v(x)− 2
∫ b

a

dy ln |x − y|σ0(y) = A

we find

v(b)

2
−
∫ b

a

dy ln |b − y|σ0(y) = A

2
.

From the definition ofS2(t),

v(b)

2
+ S2(b) = A

2
.

Thus

e−S2(t+iε) = exp

[
− A

2
+ v(t)

2
− iπ

∫ t

b

dx σ0(x)

]
t ∈ [a, b]

and we have the alternative asymptotics expansion,√
w(t)pN(t) ∼

√
b − a

4

e−A/2

[(t − a)(b − t)]1/4
cos

[
φ(t)− π

4
− π

∫ t

b

dx σ0(x)

]
. (4.11)
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If v(x) is even, thena = −b andφ(−t) = −φ(t)+π/2. Furthermore, sinceσ0(x) is even,
we have ∫ −t

b

dx σ0(x) = −N +
∫ b

t

dx σ0(x).

Using these the parity rule satisfied bypN(t) is easily established. We can also obtain the
orthonormal polynomials througĥpN(t) = pN(t)/

√
hN , wherehN is the square of theL2

norm ofpN(t). However, from standard theory, see for example [2],

hN = exp[−(FN+1− FN)] ∼ exp

[
− ∂F
∂N

]
= exp[−A]. (4.12)

Thus

p̂N (t) = exp

[
A

2

]
pN(t). (4.13)

We note here an interesting identity relatingA and a certain integral involving the external
potentialv(x) :

A

2
−
∫ b

a

dxv(x)

2π
√
(b − x)(x − a) = −N ln

(
b − a

4

)
.

Thus

[(b − t)(t − a)]1/4
√
w(t)p̂N(t) ∼

√
b − a

4
cos[9N(t)] t ∈ [a, b] (4.14)

where

9N(t) = (2N + 1)φ(t)− π
4
− P

∫ b

a

dx

2π

v(x)

x − t
√
(b − t)(t − a)√
(b − x)(x − a)

= φ(t)− π
4
− π

∫ t

b

dx σ0(x). (4.15)

Recognizing thatβN = (b − a)2/16+O(N−µ), µ > 0 [2], we have√
w(t)

[
(b − t)(t − a)

βN

]1/4

p̂N (t) = c cos[9N(t)] + o(1) (4.16)

wherec is constant to be determined by the approximate normalization condition on the
polynomials, ∫ b

a

dt w(t)[p̂N (t)]
2 = 1.

Using the asymptotic formula (4.16), and replacing cos2[9N(t)] by its root-mean-square
value, 1

2, we find

c = 2

√
2

π(b − a) .

Thus the normalized polynomials read, fort ∈ [a, b],√
w(t)[(b − t)(t − a)]1/4p̂N (t) =

√
2

π
cos[9N(t)] + o(1). (4.17)

From the strong asymptotics of the orthonormal polynomials, the reproducing kernel reads,

KN(t1, t2) = cos[9N(t1)] cos[9N−1(t2)] − cos[9N(t2)] cos[9N−1(t1)]

π(t1− t2)
√

sin[2φ(t1)]
√

sin[2φ(t2)]
(4.18)
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where we have assumed that

b(N + 1)− b(N) = o(b(N)) and a(N + 1)− a(N) = o(a(N))

which is justified if v(x) has polynomial increase for sufficiently largex, [2]. The
reproducing kernel can be further transformed into a useful form for the ‘bulk-scaling’
limit, to be described later.

For sufficiently largeN ,

9N−1(t) = φ(t)− π
4
− π

∫ t

b

dx σ0(x;N − 1)+ o(1)

and (see [2])

σ0(x,N − 1) = σ0(x,N)− ∂σ0(x,N)

∂N
+ o(1).

Also, for x ∈ [a, b], (see [2])

∂σ0(x,N)

∂N
= 1

π
√
(b − x)(x − a) .

Using these,

9N−1(t) = 9N(t)+
∫ t

b

dx√
(b − x)(x − a) + o(1)

= 9N(t)− 2φ(t)+ o(1).

The reproducing kernel becomes,

KN(t1, t2) = cos[9N(t1)] cos[9N(t2)− 2φ(t2)] − cos[9N(t2)] cos[9N(t1)− 2φ(t1)]

π(t1− t2)
√

sin[2φ(t1)]
√

sin[2φ(t2)]

= − sin[η(t1)+η(t2)] sin[φ(t1)− φ(t2)]+ sin[η(t1)− η(t2)] sin[φ(t1)+φ(t2)]
π(t1− t2)

√
sin[2φ(t1)]

√
sin[2φ(t2)]

(4.19)

where

η(t) := −π
4
− π

∫ t

b

dx σ0(x) t ∈ [a, b].

By the taking the limitt1→ t2, we find

KN(t, t) = σ0(t)− b − a
4π(b − t)(t − a) cos

[
2π
∫ t

b

dx σ0(x)

]
.

The second term of the previous equation gives an oscillatory correction to the Coulomb
fluid density. Numerically, using Mathematica,KN(t, t), computed for the example of
the Hermite polynomials, agrees very well with that obtained from the strong asymptotic
formula, except near the end points.

In the bulk-scaling limit, where(b − a)→∞ and |t1− t2| � (b − a), it is clear that

sin(φ(t1)− φ(t2)) = O

( |t1− t2|
b − a

)
(4.20)

while the denominator of (4.19) is O(|t1− t2|). Therefore,

Kbulk
N (t1, t2) ≈

sin[π
∫ t1
t2

dx σ0(x)]

π(t1− t2) . (4.21)
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As an example of the application of (4.17), consider the Freud weight;v(x) = |x|α, α >
1, with t = b cosθ, θ ∈ (0, π). The principal-value integral in (4.15) can be expressed in
terms of a particular hypergeometric function;

9N(b cosθ, α) = N [θ − cosθ sinθ2F1(1− α/2, 1; 3
2; sin2 θ)] + θ/2− π/4.

Thus √
b sinθw(b cosθ)p̂N(b cosθ) =

√
2

π
cos[9N(b cosθ, α)] + o(1) (4.22)

whereb is related to the degreeN;

bα = 02(α/2)2α−1N

0(α)
[1+ o(1)] (4.23)

which establishes a conjecture of [6].

5. Generalization to multi-intervals

Supposev(x, {g}) is not convex, has polynomial increase near infinity and has local minima
separated by local maxima. Here{g} = (g1, g2, . . .), is a finite set of real ‘adjustable’
constants. Based on the Coulomb fluid picture of [2], we see that a possible fluid/eigenvalue
density,σ0(x), is that which minimizesF [σ0, λ = 0], is a solution of the integral equation

v(x)− 2
∫
L

dy ln |x − y|σ0(y) = A x ∈ L (5.1)

and which is supported in the union ofm mutually disjoint intervals;

L = ∪mj=1Lj Lj = [aj , bj ] (5.2)

provided the constants,{g}, are chosen appropriately. We give a brief description of how
this may be accomplished. We start with a single interval solution which vanishes at the end
points of the interval. Suppose the set{g} is tuned to a set of critical values{gc} for which
the density vanishes at points contained in the interval (excluding the end points). If{g} is
increased beyond the critical values, then the density breaks up into ‘lumps’ supported in a
union of disjoint intervals.

In this situation, theσ0(x) which vanishes at the end points ofL reads [9]

σ0(x) =
√
R(x)

2π2
P

∫
L

dy
v′(y)

(y − x)√R(y) x ∈ L (5.3)

supplemented bym side conditions,∫
Lj

dx xj−1v′(x)√
R(x)

= 0 16 j 6 m (5.4)

where

R(x) :=
m∏
j=1

(x − aj )(x − bj ). (5.5)

Note that (5.3) has the alternative form,

σ0(x) =
√
R(x)

2π2

∫
L

dy√
R(y)

v′(x)− v′(y)
x − y . (5.6)
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Let {xmin
j , 1 6 j 6 m} denote them local minima ofv(x) with a suitably chosen set{g},

thenaj + ε < xmin
j < bj − ε. If v(x) is sectionally convex, i.e.v′′(x) > 0, for x ∈ (aj , bj ),

then

lim
x→b−j

σ0(x)√
bj − x

= G(a1, , , am, b1, , , bm) > 0 16 j 6 m (5.7)

and

lim
x→a+j

σ0(x)√
x − aj = H(a1, , , am, b1, , , bm) > 0 16 j 6 m. (5.8)

This generalizes the one interval result obtained in [2].
Together with the normalization condition,

∫
L

dx σ0(x) = N , there are onlym + 1
conditions; not enough to determine the 2m unknowns{aj , bj , 1 6 j 6 m}. This problem
can be solved if we could find extra side conditions to complete the existing ones, (5.4).
From the above argument we see that the densityσ0(x) ‘breaks up’ intom pieces each of
which contains a fraction of the total number of particles,N . More precisely,∫

Lj

dx σ0(x) = αjN 06 αj 6 1 16 j 6 m. (5.9)

Note that due to the normalization condition,

αm = 1−
m−1∑
j=1

αj . (5.10)

Therefore we have 2m conditions; (5.4) and (5.9) for inverting the 2m unknowns,
{aj , bj , 1 6 j 6 m} in terms of {α1, , , αm−1, N}. In order to determine the parameters,
αj , 1 6 j 6 m − 1, in terms ofN , we propose a supplementary minimum principle.
Substituting the the fluid density,σ0(x), back into the free energy functional, we see that
the free energy,F , is a function of{αj , 16 j 6 m− 1, N};

F = F(α1, , , αm−1, N). (5.11)

Therefore the sought after{αj , 16 j 6 m− 1} is such (5.11) is minimized. The necessary
condition reads,

∂F

∂αj
= 0 16 j 6 m− 1. (5.12)

We conclude this paper by generalizing the linear statistics formula (2.20) to the multiple
interval case:

P̂(k, [f ]) = exp[−S[f ]] (5.13)

where

S[f ] := k2

4π2

∫
L

dxf (x)√
R(x)

P

∫
L

dyf ′(y)
√
R(y)

x − y + ik
∫
L

dx f (x)σ0(x) (5.14)

where
∫
L

dxσ0(x) = N , and the end points are determined by (5.4), (5.9) and (5.12).
The application of (5.14) to the number statistics and the gap orthogonal polynomials

will be made in a future publication.
For applications of the linear statistics formula, such as the computation of the

conductance of a disordered systems, we refer the readers to the review article [1] and
the references therein and to [3] where the probability density function of arbitrary linear
statistics was first obtained inN →∞ limit. We note here that (1.2) withg(M) specialized
to det(It−M) andv(M) specialised toM2 can be computed using supersymmetric methods
[4]. However, the methods introduced in this paper only requires thatv′′(x) > 0 and does
not requirev(x) = x2.
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