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On the linear statistics of Hermitian random matrices
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Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2BZ, UK
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Abstract. In this paper we continue with the study of linear statistics of random Hermitian
matrix ensembles. We generalize the result of a previous paper on the probability density
function of linear statistics to the finit¢/ ensembles where the interval of support of the
eigenvalue spectrum is a single interval.

Combining the Hankel determinant formula for orthogonal polynomials which are associated
with Hermitian matrix ensembles and the linear statistics theorem for fwjteve obtain the
strong or oscillatory asymptotics for the polynomials orthogonal with respect to weight functions
supported on the real axis.

1. Introduction

In the application of the theory of random matrices, for example in the theory of quantum
transport in disordered systems [3], one is often encountered with the random variable

Q =1tr f(M) (1.1)

where f (M) is a real-valued function of th& x N matrix M.

The space of matrices has the probability measure [5]
prob(M)dM := exp[-tro(M)]dM =vol(B. N) [] | —xl® [] €™ dv. (1.2)

1< j<k<N 1<ISN

Here{x; : 1 < j < N} are the eigenvalueg, = 1, 2, 4 are for matrices with orthogonal,
unitary and symplectic symmetries respectively and(f&aV) are the corresponding
volumes of the symmetry groups that diagonalize the respective matrices. For the purpose
of this paper we shall assume thd) is convex, forx € R, and therefore” (x) is positive
on a set of positive measure.

2. Linear statistics

We suppose the probability density function®@f denoted byP(Q), is known and compute
its Fourier transform,

400
Pk) = / doe *2p(Q) (2.1)
where
P(Q) = (8(Q —tr f(M)))u- (2.2)
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1142 Y Chen and N Lawrence

The symbol{-),, denotes an average over the matrices

[ dM exp[=N tru(M)]g(M)
& = G exp N tr o (M)]

Note that we have introduced the factérin front of v (M) for the convenience of evaluating
the multiple integrals in a larg® or Coulomb fluid approximation [8]. In what follows we
shall only deal with the Hermitian case, i@ = 2.
Expressing &/ in the eigenvalue form using (1.2), we have, writikgais A,
Zn()

P(—ir) = Zni=0) = exp[-(Fy(}) — Fy(A = 0))] (2.4

(2.3)

where

N o0 N
Zy (L) = (]_[f dx,) exp[ — D(x1, ..., XN) — A Z f(xn)i|. (2.5)
j=1Y—x n=1

If we interpretx;, j = 1,..., N as the positions aV charged particles (all carrying identical
charges), then

N
Q(rp, ... xy)i=-2 Y Inly—xl+N Y o) (2.6)
1<j<k<N j=1
becomes the total energy of repelling classical charged particles confined by a common
external potentialVv(x). The linear statisticsf (x), becomes a perturbation to the original
system. In the limit of largeN the collection of particles can be approximated as a
continuous fluid with a density (-) supported inJ (a subset ofR). If o is normalized
to unity, theno can be obtained as the solution of the following constrained minimization
problem:

min, Flo] subject to/ dxo(x) =1 (2.7)
J
where
F(A) = / dx o (x)[N?v(x) + ANf(x)] — N2/ dx /dy o) In|x — ylo(y). (2.8)
J J J

Here F (1) is interpreted as the free energy of the system under an external perturbation with
‘strength’ A and F (A = 0) the free energy of the original system. Therefore, the Fourier
transform of the linear statistics can be expressed as the change in the free energy due to
perturbation;

P() = exp[-(F() — F(A = 0))]. (2.9)
Upon minimizationo (x) is found to satisfy the integral equation

N?v(x) + ANf(x) — ZNZ/ dylnjx — ylo(y) = NA xelJ (2.10)
J

whereA is a constant fox € J and N A is the Lagrange multiplier that fixes the constraint
also known as the chemical potential. Differentiating (2.10) with respeat ¢gives the
singular integral equation

N2V (x) + ANf'(x) — 2N2P/ dy o(y)=0 xelJ (2.11)
JX=Yy
satisfied byo. To solve foro we write
o(x) = oo(x) + @ (2.12)

N
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with
/dxao(x) =1 /dxg(x) =0. (2.13)
J J

We supposer solves,

V' (x) —ZP/ dy
JX =

d
Af(x) — ZP/ = oy =o. (2.15)
JX =Yy

yoo<y> =0 (2.14)

andp solves

We now discuss the solution farg. Under the assumption that(x) is convex and
consequentlyv”(x) > 0 in a set of positive measure, it can be shown that dg]x)

is supported in a single intervdl, b). The solution subject to the boundary condition
oo(a) = 0 = og(b) reads, according to the theory of singular integral equations [9],

m v'(y)
op(x) = / N CERICET) y € (a,b) (2.16)
with a supplementary condition,
b /
v (2.17)
V(b —=x)(x —a)
The normalization conditionfab dxo(x) = fab dx og(x) = 1, becomes,
b /
L __w (2.18)
Vb —=x)(x —a)
The unique solution fop subject tof, dx o(x) =0, is
_ s PN =nO—a)
o(x) = N T a)P/a dy Tf ) (2.19)
recalling that the support afy, J, is (a, b). Thus the change in free energy is
A b b
FO)—F(=0) = —f F(x)ox) + XN/ dx f(x)oo(x)
J(x) b Vo= —a) ,
4712 «/(b—x)(x—a)P dv y—x )
+AN/ dx f(x)oo(x). (2.20)

Therefore,P(Q), the probability density of the linear statistiggx), is a Gaussian with
mean,

b
N/ dx f(x)og(x) (2.21)

and variance

b «/f
i dr— I e dy—(b xy_)(yy D £y, (2.22)

V(b —x)(x —a)
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If P(k) is interpreted as the probability densftynctional of the local density random field,
then the covariance or the two-point function of the local density (normalized so that the
total number of eigenvalues i8) is

1, ab+xy—(x+y)a+b)/2
212 Jb—0)(x —a)J b =) —a)x —y)?

Note that in this normalization of the density, the right-hand side of (2.18) should be replaced
by N. For convexv(x), we haveb — +oco, asN — oo, anda — —oo, aSN — oo.
Therefore,

Cov(x, y) =

(2.23)

1
272(x — y)?

reducing to a well known result [5].

In the next two sections, we give applications of the linear statistics formulae (2.21)
and (2.22). In section 3 we give the probability density function for the number statistics,
n[A, B], defined to be the number of eigenvalues in an interval4] contained in &, b].

This was first investigated in [3] where the eigenvalues are supported é)[@nd in the

limit N — oco. We shall see that the probability density of the number of eigenvalues in an
interval is a Gaussian with a universal variance behaving in a qualitatively similar way as
that studied in [3]. In section 4, an interesting application of (2.20) is made to compute the
strong asymptotics of the orthogonal polynomials based on the Hankel determinant formula.
This gives the strong asymptotics of the polynomials in terms of the confining potential
v(x). Using the asymptotic formula we compute the reproducing kernel and investigate its
bulk scaling form. By specializing(x) we establish a conjecture of Nevai on the Freud
polynomials [6], wherev(x) = |x|*, x € (—o0, 00), @ > 1. This is found to be agreement
with the result of [7]. In section 5, we indicate how the asymptotics of the gap orthogonal
polynomials can be determined.

lim Cowv(x, y) = (2.24)
N—o00

3. The number statisticsn[ A, B]

In this case the appropriate linear statistics is
) = x1a.5/(x) a<A<x<B<b (3.1)

where yx4,5(x) is the characteristic function of the interval[B]. Note that the
characteristic function has the convenient forgs 5 (x) = %[e(x —A)—0(A—x)—
(@(x — B) —0(B — x))]. Using (2.20) we find

Ba%dx/(4n?) [Wb —AH(A-a) JO-B)B- a)]
A Vb —x)x —a) A—x B —x

B
+AN/ dx og(x) (3.2)
A

FO)—F(A=0)=P

where the first integral is found by using the fact th@l,g](X) =38(x —A) —8(x — B).
The second integral is the average number of particles/eigenvalues in the intenBj! [

Denoting the first integral aS[A, B], it can be seen in the bulk scaling limit, where
b > B and|a| > |A], that

S[A,B]:_o[m(B;Aﬂ B—A>c¢ (3.3)
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where ¢ is the short distance cut-off dictated by the principal-value integral. Explicitly
S[A, B], can be expressed in terms of elementary functions, however, the logarithmic
behaviour is not apparent.

To see this we specialize to evelix), and consequently = —b. We also choose a
symmetric interval for the characteristic functioh;= —B. Thus, denoting = 2B,

A2 s 52 A2 s
Therefore the probability density of the number of eigenvalues in a symmetric interval
of lengths, confined by an even convex potential is a Gaussian centred at
s/2
N dx og(x) (3.5
—s/2
with variance
1 s
—1n (-) . (3.6)

&
This generalizes the result obtained in [3].

4. Strong asymptotics

In the theory of Hermitian random matrices, a fundamental quantity, denotédJds is

the probability that the interval of the spectrum has no eigenvalues. This quantity can
be expressed as the Fredholm determinant of a certain integral opelf’atomer J [5];
E[J] = det[1— K,], where K has kernel

B () — B () A (x

Kx,3) = Vutuiy)y By PP PPN

Herew(x) = e ™ is weight function of the orthonormal polynomiags (x);
+00

dx w(x)lam(x)ﬁn(x) = (Sm,n

—00

and satisfies the recurrence relations
xﬁn(x) = ﬁn+1]§n+l(x) + O5}11311 (x) + vV ﬂnﬁnfl(x)

with o, € R and g, > 0. Ky(x, y) is also known as the reproducing kernel.

It is therefore of interest to determine asymptotics for the polynomials in the bulk scaling
limit, which corresponds to fixing in the oscillatory region of the polynomials and with
N large.

According to the Hankel determinant representation for monic polynonpal§)
orthogonal with respect to the weight functiarit), has the multiple-integral representation
[10];

(T [ dejw () TTaeycpen 16— %2 TTemy (8 — x0)

pn () = (dettl — M)y = _
’ ! (1_[1N=1 fjoo de w(x;)) ngl<ngN X1 — xn|?

4.1)
From this we recognize that the computatipn(z) is a special case of the linear statistics
theorem, with f(x; ) ;= —In(z — x), andA = 1. It is well known that an orthogonal

polynomial of degreeV has N real simple zeros which are bounded by the end points of
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the support oby, the zero counting function, denoted @agndb. It can be shown thau|
andb are increasing functions a¥ if v(x) is convex and are determined by

b v (x) ~0 b xv'(x) .
o NO-xG&-a) « NJE-x0G&-a)
Note that herefab dx og(x) = N. The largest zero for larg&' is slightly smaller therb for
convexv(x), [2]. We therefore compute the change in the free energy ferb, so that
In(t —x) > 0, for x € (a, b). It can be shown that the formula given below is valid for

outside the interval in which the zeros pf;(¢+) are contained. Far> b andt < a, py(t)
does not oscillate. Thus denoting the change in the free enerdgyrhygives,

pn(t) = exp[=S()] t ¢ a,b] 4.2)

27 N.

where
S(1) = S1(2) + Sa(2) 4.3)
with

1 bdx nt—v bd Vo-nh—a

=g " eoa=a ) Y o000 (4-4)
b
So(t) = —/ dx In(r — x)oo(x) (4.5)

for ¢ ¢ [a, b]. To determine the strong asymptotics, fof [a, b], wherepy (¢) oscillates, we
definepy(¢),t € [a, b] to be the real part of the analytic continuation @§(¢), ¢t ¢ [a, b].
Thus

pn (@) = R[exp[—S(t +ig)]] t € [a, b] e — 0. (4.6)

We find after some elementary computations,

2
1 16(t —a)(t —b) | /t —a—t—b
= -1 4.7
S1(1) 4{ b—ay [MJM/E}} t ¢[a, D] (4.7)
2
S>(t) = —Nn <—Vt_a—£ Vt_b)

/b dy v(y) [ (t—a)—Db) + l] t ¢ [a,b] (4.8)

2r Jb— )0 —a) y—1
where the normalization and supplementary conditions have been used to aj¢e) at
The behaviour ofSi(z) for Rt € [a,b], and It = ¢ — 0, can be found by the
parametrization;

t—a=|t —ale* t—b=|t—bld” 0, = ¢ Op =7 — &.

Thus

. b— 1 .
esero - [Pt menli(00-F)]  relat (4.9)

and the angle () can be parametrized in several ways:

2t — (b +a) GRS
— tanfp (1)] = o (4.10)

cos[2p ()] =
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To determineS(r +ie), t € [a, b], we use the same procedure as in determifing + ie)
and the Sokhotski—Plemelj formula [9] and find

2N
oSai-i) _ Vb—a exp[m P v(x) ]
2 2 « 21 /(b—x)(x —a)
. (P dx v(x) VO -1 —a)
exp|2iNg(t) —iP —
x p|: o0 /a an—t«/(b—x)(x—a):|
Using the above information, we find that the orthogonal polynomials have the following
strong asymptotics expansion,

2N+1
V@O py () ~ ( Vb;“)

x COS[(ZN + () — % - P/
t € [a, b].

This gives the strong asymptotics expansion directly in terms of the confining potential,
v(x).

There is an alternative evaluation 8§(¢), which has the advantage of exposing the
parity rule satisfied bypy(z) for evenv(x), py(—t) = (=1)Vpn(t),t € R. First we
compute®2, ¢ ¢ [a, b]. Thus

t € [a,b].

L ex [_ b%—v(x) ]
[b-0c-al” P ), e JoomG -
b dx v() Ji(b—r)(r—m]

2nx —t/(b—x)(x —a)

b
Sy(1) = — / dx ‘:0_()2 and Syt

b
= —P/ dx o0(x) + imoo(t)
t—x
v'(1)

= —T + |7TO'0(t)

t—t+ie

Integrating fromb to ¢, gives

So(t +ig) = Sa(b) — M n inf dsoo(s) 1 €[a, b].
b

Puttingx = b in the integral equation satisfied lay,
b
v(x) — 2/ dy In|x — yloo(y) = A

we find

b
U() /dy In|b — yloo(y) =

From the definition ofS>(z),
v(b)
T + SZ(b)
Thus
—Sy(1-+ie) v(r)
e 2 = exp ——+——7r dxao(x) t € [a,b]

and we have the alternative asymptotlcs expansion,

e A2 T t
Vw@®)py () ~ ,/ [(t—a)(b L cos[gb(t)— 1 —n/b dxcro(x):|. (4.12)
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If v(x) is even, them = —b and¢(—t) = —¢(¢t) + /2. Furthermore, sincep(x) is even,
we have

—t b
/ dx op(x) = —N +/ dx op(x).
b t

Using these the parity rule satisfied by (¢) is easily established. We can also obtain the
orthonormal polynomials throughy (t) = pn(t)/</hy, Wherehy is the square of thé?
norm of py(t). However, from standard theory, see for example [2],

aF
hy = exp[—(Fy41— Fy)] ~ eXD[—W] = exp[-A]. (4.12)
Thus
. A
pn() = exp[ﬂ pn (). (4.13)

We note here an interesting identity relatidgand a certain integral involving the external
potentialv(x) :

A /” dxv(x) NI (b — a)
2 J. 2nJb—x)(x —a) 4 )

Thus
[(b — 1) — )@ pu ) ~ oSl ]t efab] (4.14)
where

b d b =
O RIE = =

—p()—Z—x /r dx 6p(x). (4.15)
4 b

Recognizing thaBy = (b — a)?/16+ O(N~*), u > 0 [2], we have

_ _ 1/4
Vw(t) [W] pn () = ccosWy(1)] + o(1) (4.16)

wherec is constant to be determined by the approximate normalization condition on the
polynomials,

b
/ dr w(®)[pn(0]* = 1.

Using the asymptotic formula (4.16), and replacing?f¥s ()] by its root-mean-square
value, 2, we find

721
c=2| 2
w(b—a)

Thus the normalized polynomials read, fo€ [a, b],

2
Vw®[b -0 —a)]Ypy ) = \/; cosfy (1] + o(1). (4.17)

From the strong asymptotics of the orthonormal polynomials, the reproducing kernel reads,

Kn(ty. 1) = cosWy (11)] cOS[Wy—1(t2)] — cosWy ()] cOS[Wy—1(11)] (4.18)
v 7 (11— 12)v/SN[2 ()] /SN2 (72)] '
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where we have assumed that
b(N +1) — b(N) = o(b(N)) and a(N +1) —a(N) = o(a(N))

which is justified if v(x) has polynomial increase for sufficiently large [2]. The
reproducing kernel can be further transformed into a useful form for the ‘bulk-scaling’
limit, to be described later.

For sufficiently largeN,

Wy_1(r) = (1) - % - ﬂ/b dx oo(x; N — 1) + o(1)

and (see [2])

oo(x, N —1) = op(x, N) — w 4+ 0o(1).
Also, for x € [a, b], (see [2])

dop(x, N) _ 1

oN N /b —x)(x —a)

Using these,

! dx
Wy-1() = Wy (1) +/b m + o(1)

= Wy(t) — 2¢(t) + 0o(1).
The reproducing kernel becomes,
cos[Wy (11)] cos[Wy (12) — 2¢(t2)] — cos[Wy (12)] cOS[Wy (11) — 24 (11)]

Kl 12) = 711 — 12) /SN2 D]/ SN2P 2]
_ sin[n(r1)+n(t2)] sin[¢ (1) — ¢ (12)]+ Sin[n(t1) — n(t2)] sin[¢p (11)+¢ (12)]
7 (t1 — t2)+/SIN[2p (t1)]+/SIN[20 (12)]
(4.19)
where

n() = _z —n/ dx og(x) t €la,b].
4 b

By the taking the limitt; — ., we find

K b-a S
N(l, t) = Go(t) — m COS|: ﬂ/b\ O—O(X)i|.
The second term of the previous equation gives an oscillatory correction to the Coulomb
fluid density. Numerically, using MathematicX y (¢, t), computed for the example of
the Hermite polynomials, agrees very well with that obtained from the strong asymptotic
formula, except near the end points.

In the bulk-scaling limit, wheréb — a) — oo and|t; — 1] < (b — a), it is clear that

sin(@ (1) — ¢ (t2)) = O ( 't; - f') (4.20)
while the denominator of (4.19) is(@, — #2|). Therefore,
sin[r ftil dx 0p(x)]

bulk ~
Ky (1, 1) =

4.21
7(ty — 12) ( )



1150 Y Chen and N Lawrence

As an example of the application of (4.17), consider the Freud weighj;= |x|%, « >
1, witht = bcosd, 6 € (0, r). The principal-value integral in (4.15) can be expressed in
terms of a particular hypergeometric function;

Wy (bcosd, @) = N[0 — cosh sindFi(1 — /2, 1; 3;sinf6)] +6/2 — 7 /4.
Thus

Vb sindw(bcosh) py (b cosh) = \/gcos[\ll,v(b cosh, )] + o(1) (4.22)

whereb is related to the degre¥;
_ T%a/22'N
T

which establishes a conjecture of [6].

b [1+o(1)] (4.23)

5. Generalization to multi-intervals

Suppose(x, {g}) is not convex, has polynomial increase near infinity and has local minima
separated by local maxima. Hefe} = (g1, g2,...), is a finite set of real ‘adjustable’
constants. Based on the Coulomb fluid picture of [2], we see that a possible fluid/eigenvalue
density,op(x), is that which minimizes[og, A = 0], is a solution of the integral equation

v(x) — 2/ dy Injx — ylog(y) = A xelL (5.2)
L

and which is supported in the union af mutually disjoint intervals;
L = U;VL:]_LJ' Lj = [aj, bJ] (52)

provided the constantgg}, are chosen appropriately. We give a brief description of how
this may be accomplished. We start with a single interval solution which vanishes at the end
points of the interval. Suppose the $e} is tuned to a set of critical valugg“} for which
the density vanishes at points contained in the interval (excluding the end pointg).isf
increased beyond the critical values, then the density breaks up into ‘lumps’ supported in a
union of disjoint intervals.

In this situation, thesg(x) which vanishes at the end points bfreads [9]

v R(x) v'(y)
op(x) = P/d— xelL 5.3
° 227 " ), G = VRD) &3
supplemented by: side conditions,
dx x/ 10/ (x)
- = 1<j<m 5.4
L 5] J (5.4)
where
R(x) =[] —ap@ - by). (5.5)
j=1
Note that (5.3) has the alternative form,
v R(x) dy v'(x)—v (y)_ (5.6)

o0(x) = 2n2 J, JR(GY) x-—y
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Let {x m'“ ,1 < j < m} denote then local minima ofv(x) with a suitably chosen sdg},
thenaj +¢&< x}”'“ < b; —e. If v(x) is sectionally convex, i.ev”(x) > 0, for x € (g;, b;),
then

oo(x)

Ilm = G(alssvamvblv»sbm) > O 1<j <m (5'7)
x—»bj’ bj — X
and
. op(x) .
lim = H(ay,,,an,b1,,,by 0 1<j<m. 5.8
o e (a1, am, b1 ) > Jjsm (5.8)

This generalizes the one interval result obtained in [2].

Together with the normalization conditior, dx og(x) = N, there are onlym + 1
conditions; not enough to determine the 2inknownsia;, b;, 1 < j < m}. This problem
can be solved if we could find extra side conditions to complete the existing ones, (5.4).
From the above argument we see that the dengity) ‘breaks up’ intom pieces each of
which contains a fraction of the total number of particla’s, More precisely,

/ dx oo(x) = a; N 0<o; <1 1<j<m. (5.9)
Lj

Note that due to the normalization condition,
a=1-) a. (5.10)
j=1

Therefore we have /2 conditions; (5.4) and (5.9) for inverting them2 unknowns,
{aj,b;,1 < j < m} in terms of{ay,,, a,—1, N}. In order to determine the parameters,
a;,1 < j <m-—1,interms of N, we propose a supplementary minimum principle.
Substituting the the fluid densityp(x), back into the free energy functional, we see that
the free energyF, is a function of{e;, 1 < j <m — 1, N};

F = F(Ol]_, sy sy O—1, N) (511)
Therefore the sought aftée;, 1 < j < m — 1} is such (5.11) is minimized. The necessary
condition reads,

oF

—~— =0 1<j<m-1 (5.12)

80[1'

We conclude this paper by generalizing the linear statistics formula (2.20) to the multiple

interval case:

Pk, [f]) = exp[-S[f]] (5.13)
where

dxf @ p dyf (MR ()
U= [ e p [ SEED i [ pwoo) (51
where [, dxog(x) = N, and the end pomts are determined by (5.4), (5.9) and (5.12).

The application of (5.14) to the number statistics and the gap orthogonal polynomials
will be made in a future publication.

For applications of the linear statistics formula, such as the computation of the
conductance of a disordered systems, we refer the readers to the review article [1] and
the references therein and to [3] where the probability density function of arbitrary linear
statistics was first obtained iIN — oo limit. We note here that (1.2) with(M) specialized
to detlr — M) andv(M) specialised ta/? can be computed using supersymmetric methods
[4]. However, the methods introduced in this paper only requiresuth@) > 0 and does
not requirev(x) = x2.
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